Paste your Google Webmaster Tools verification code here

Big Data

Big Data : les prédictions 2015 de Xavier Guérin, MapR

on

Hadoop continue de démontrer que les entreprises réalisent un retour sur investissement mesurable en stockant, traitant, analysant, et partageant leur Big Data. En ce début d’année 2015, nous souhaitons vous partager le point de vue de Xavier Guérin, Vice Président EMEA en charge du business development, des partenariats et des alliances chez MapR, sur les évolutions majeures qui vont conduire à faire du Big Data un élément d’infrastructure incontournable pour les grandes entreprises en 2015.

2015 sera l’année où les organisations poussent leurs déploiements Big Data au-delà des implémentations initiales de traitement par lots pour passer au temps réel. Cette évolution est le fruit des avancées considérables réalisées par les leaders de l’industrie, et par les leaders en devenir, dans l’intégration de nouvelles plateformes Big Data dans leurs opérations, s’appuyant sur l’analytique « à la volée » pour transformer leurs métiers.

Les cinq principales évolutions de 2015 selon Xavier Guérin seront les suivantes :

1. L’agilité des données devient le principal sujet

Les bases de données historiques et les data warehouses sont si onéreux que les ressources des administrateurs sont requises pour aplatir, résumer et pleinement structurer les données. Mais les coûts associés retardent l’accès à de nouvelles sources de données, et les structures rigides s’avèrent difficiles à modifier alors qu’elles vieillissent. Le résultat est évident : les bases de données patrimoniales ne sont pas suffisamment agiles pour répondre aux besoins modernes de la plupart des organisations. Les projets Big Data initiaux se concentraient sur le stockage de données issues de sources variées. Plutôt que de se concentrer sur le volume de données gérées, les organisations vont se concentrer sur l’évaluation de l’agilité des données. Comment l’agilité à traiter et analyser des données affecte les opérations ? Avec quelle rapidité est-il possible de s’adapter et de répondre aux changements dans les préférences des clients, dans les conditions de marché, dans les actions des concurrents, et dans le statut des opérations ? Ces questions vont influer sur les décisions d’investissement et sur le périmètre des projets Big Data de 2015.

2. Les organisations passent de lacs de données à des plateformes de traitement de données

Au cours de l’année passée, les lacs et hubs de données ont été populaires pour les déploiements Hadoop initiaux. Un lac de données, ou hub de données, est une infrastructure élastique qui est à la fois économiquement attractive – avec un coût par To réduit – et agile – elle est capable de stocker des formes variées de données structurées et non structurées. La possibilité d’utiliser des milliers de serveurs et de stocker des pétaoctets de données pour moins de 1000 $/To par an est l’un des bénéfices clés d’Hadoop. En 2015, les lacs de données vont évoluer, les organisations passant du traitement par lots au temps réel pour intégrer des moteurs de bases de données, Hadoop, et des données basées sur des fichiers au sein de plateformes de traitement à grande échelle. En d’autres termes, il n’est plus question de stockage à grande échelle dans un lac de données pour supporter des requêtes et des rapports plus étendus ; la grande tendance de 2015 touchera à l’accès en continu et au traitement d’événements et de données en temps réel pour accéder à une information continue et pouvoir ainsi agir dans l’instant.

3. Le Big Data en self-service se démocratise

En 2015, l’IT va adopter le Big Data en self-service pour permettre aux utilisateurs métiers d’y accéder de manière autonome. Le self-service donne plus d’autonomie aux développeurs, aux scientifiques des données, et aux analystes pour conduire directement l’exploration des données. Précédemment, l’IT était nécessaire pour établir des structures de données centralisées, une étape chronophage et coûteuse. Hadoop a permis aux entreprises de profiter d’une structuration à la lecture pour certains cas d’usage. Les organisations avancées vont passer aux liaisons de données établies à l’exécution, s’éloignant des structures centralisées pour répondre à leurs besoins courants. Ce self-service accélère l’activité des organisations en leur offrant plus de flexibilité pour tirer profit de nouvelles sources de données et répondre à de nouvelles opportunités et menaces.

4. Les architectes d’entreprises séparent « big hype » et « Big Data »

Alors que les organisations passent rapidement de l’expérimentation à la généralisation, dans le centre de calcul, les architectes d’entreprise avancent et se concentrent sur l’adoption du Big Data. Les décideurs IT seront essentiels pour déterminer les architectures sous-jacentes nécessaires pour honorer les accords de niveau de service, mais également pour fournir une haute disponibilité et continuité de l’activité, et pour répondre aux besoins critiques. En 2014, l’écosystème dynamique Hadoop a été marqué par la multiplication des applications, des outils et des composants. En 2015, le marché se concentrera sur les différences entre plateformes et l’architecture nécessaire pour intégrer Hadoop dans le centre de calcul afin de fournir les résultats métiers.

MAPR sera présent sur le congrès Big Data Paris 2015. Venez les rencontrer en vous inscrivant ici.

Commentaires

commentaires

About Thomas Graindorge

Fan de nouvelles technologies, je suis co-fondateur du site After the Web. N'hésitez pas à me contacter pour devenir à votre tour rédacteur sur le site.

Recommended for you

You must be logged in to post a comment Login